Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

نویسندگان

  • enhancements Y. Shi
  • E. Zesta
چکیده

Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and nonrelativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model. Correspondence to: Y. Shi ([email protected])

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sawtooth oscillations directly driven by solar wind dynamic pressure enhancements

[1] We have examined four well-defined events of sawtooth oscillations in energetic particle flux and magnetic field at geosynchronous orbit. During all four events, nearly simultaneous energetic particle flux enhancements and magnetic field variations occurred at all MLTs for each sawtooth cycle. Geomagnetic H component data at low to middle latitude also show a global H increase simultaneousl...

متن کامل

Geosynchronous magnetic field response to solar wind dynamic pressure pulse

[1] We present a study of the response of the geosynchronous magnetic field to abrupt enhancements of the solar wind dynamic pressure. Results are obtained separately for cases of northward and southward interplanetary magnetic field (IMF) prior to and after the solar wind pressure jump. For pressure enhancements with southward IMF we find that the response of the geosynchronous magnetic field ...

متن کامل

Comparison of geosynchronous energetic particle flux responses to solar wind dynamic pressure enhancements and substorms

[1] Geosynchronous energetic particle fluxes are used to examine the differences and similarities between the particle disturbances due to an enhancement in solar wind dynamic pressure Pdyn and those caused by substorms. Disturbances are also distinguished by IMF conditions. First, for not strongly southward IMF conditions (weakly southward or northward IMF), we find that the magnetospheric com...

متن کامل

Radial gradients of phase space density of the outer radiation belt electrons prior to sudden solar wind pressure enhancements

[1] When Earth’s magnetosphere is impacted by a sudden solar wind pressure enhancement, dayside trapped electrons are transported radially inwards, conserving their first and second adiabatic invariants (m and K). Thus, with magnetic field and particle flux measurements at geosynchronous orbit (GEO) before and after the impact, the phase space density (PSD) radial gradients of the particles pri...

متن کامل

Are energetic electrons in the solar wind the source of the outer radiation belt?

Using data from WIND, SAMPEX (Solar, Anomalous, and Magnetospheric Particle Explorer), and the Los Alamos National Laboratory (LANL) sensors onboard geostationary satellites, we investigate the correlation of energetic electrons in the 20-200 keV range in the solar wind and of high speed solar wind streams with relativistic electrons in the magnetosphere to determine whether energetic electrons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009